
Modern Problems for the Smalltalk VM

Boris Shingarov

boris@shingarov.com

Abstract

I propose an approach to managing new classes of Smalltalk

VM complexity which emerged due to recent advances in

technology, through the execution of the VM on formal mod-

els of the target processor. Three examples of this approach

are discussed. First, I describe out-of-ISA-band observation

of the VM based on full-system simulation in which the sim-

ulator is aware of the Smalltalk semantics. I also describe

experiments in mechanical co-synthesis of the VM and the

simulator from the same formal Processor Description Lan-

guage, leading to an automatically-retargetable JIT. The ma-

jor obstacle to the usefulness of this approach is the PDL’s

suitability for toolchain synthesis. Finally, an experimental

attempt to bridge from hardware structure directly to JIT is

discussed.

Categories and Subject Descriptors D.3.4 [Programming

languages]: Processors

Keywords Smalltalk Virtual Machine, Full-System Simu-

lation, Processor Description Language, Hardware-Software

Codesign, Instruction Set Architecture

1. Introduction

Since the fundamental design of the major Smalltalk VMs

has stabilized in the 1990s, the computing landscape has un-

dergone radical evolution. The merge of technologies tradi-

tionally characteristic of high-performance computing with

embedded computing, the System-on-Chip revolution, the

end of the uniprocessor era — all these changes necessitate

further evolution of the Smalltalk VM. One way to classify

these changes is by position relative to the Smalltalk VM: the

application workload we run on Smalltalk, vs. the comput-

ing platforms we run Smalltalk on. A shared characteristic of

both is an increase, and a change in the nature, of complexity

that the VM designer has to deal with.

Application workloads today often expose software de-

fects related to multiprocessor/multicore parallelism, race

conditions, or complex compiler optimizations; traditional

source-level debugging techniques [Rosenberg’96] are inef-

fective in these situations and result in prohibitively high

debugging effort. In-band observability aids (similar to

DTrace) do help factoring the complexities involved in such

defects to a limited extent.

The meaning of “performance” has been largely rede-

fined with the end of the uniprocessor era. In traditional VM

design, we mostly thought of “processor performance” in

terms of sequential instructions-per-second, and of Smalltalk

performance in terms of bytecodes-per-second and sends-

per-second, n-code cache size-efficiency, and other metrics

of similar nature. We now have very fast JITs making maxi-

mum use of the processor’s ILP features, saturating the hard-

ware in terms of bytecodes-per-second; very efficient PICs

giving maximum sends-per-second; yet today’s metrics of

performance have changed, so we would consider trading

sends-per-second for better power efficiency, as MIPJ (Mil-

lion Instructions Per Joule) has become a more important

performance characteristic than MIPS (Million Instructions

Per Second). A typical Big Data customer today is con-

cerned with the efficiency of the fundamental design of tradi-

tional Smalltalk object memory model, which imposes high

FFI marshalling overhead and high d-cache miss rate due to

high pointer dereference rate (“pointer-chasing”) inherent in

such object memory.

Modern architectures on which we run Smalltalk are un-

dergoing a fundamental change which can be characterized

as “the end of the uniprocessor era”. Dave Patterson argues

[Patterson’06] that the main challenges of today’s computer

architecture are the following “walls”:

• Design cost wall

• Software legacy wall

• Power wall

• Memory wall

• ILP wall

These new classes of complexity mean the VM researcher

has a new task before them: to create new observation strate-

gies for getting insight into the Smalltalk VM. These mech-

anisms would allow us to regain “the clearness and ease of

comprehension” (to use David Hilbert’s expression) of the

VM’s behavior in today’s complex post-uniprocessor com-

puting environment; “for what is clear and easily compre-

hended attracts, the complicated repels us”.



2. Out-of-Band VM Observation

The Instruction Set Architecture (ISA) is the interface be-

tween software and the processor; when the program (for

example, the Smalltalk VM) is running, this interface can be

thought of as a communication channel between the program

and the processor (one could imagine the instruction stream

to be the program-to-processor direction of that channel, the

other direction being the execution results: register values,

flags, branching outcome, traps, etc.; we should also not for-

get about external signals flowing into the processor). Gen-

erally the mechanisms that we use to gain an understanding

of what is happening in the software, can be classified by

their positon relative to that communication channel as ei-

ther In-Band or Out-of-Band.

Traditional debuggers [Rosenberg’96] are an example

of In-Band mechanism. In-band mechanisms are inherently

limited in what kind of information they can provide about

the system being investigated. They also lack deterministic

repeatability as well as reverse execution capabilities. This

deficiency renders them incapable of aiding in understanding

such important classes of situations as — to point out only

one class — race conditions in parts of the system driven by

asynchronous external events (e.g. network interrupts). In-

band mechanisms are also destructive to the machine state

(in other words, they are not truly transparent to the ob-

served system). For example, hitting a hardware breakpoint

will cause the execution of the breakpoint interrupt service

routine and of the whole chain of context transitions, chang-

ing the state of the machine at the system level, and at a

minimum, destroying the state of the memory cache hierar-

chy; in the end, analysis of e.g. timing-related phenomena

becomes impossible under this class of debuggers.

In contrast, an Out-of-Band observation mechanism is

any observation mechanism which does not work over the

same ISA interface to the processor as the observed system.

In the rest of this paper, I will talk about the following out-

of-band mechanisms and my experiments to use them for

better understanding of the Smalltalk VM:

• Functional simulation of the system at different levels of

fidelity (instruction-accurate, cycle-accurate, etc.);

• Software simulation of a structural model of hardware;

• Custom-Instrumented FPGA models of hardware.

In section 6, I describe an experiment in which both

the VM and (the simulator for) the machine on which the

VM executes, are both automatically derived from the same

processor description written in a formal language.

3. Full-System Simulation

Not to be confused with emulation (which focuses on mim-

icking the function of the emulated system; Bochs and

QEMU are examples of processor emulators), system sim-

ulation is concerned with modeling the internal state of the

simulated system. Simulation can rougly be generally clas-

sified into structural and behavioral. An extreme example

of a structural model of a microprocessor is Michael Steil’s

transistor-level simulation of MOS 6502. Verilog simulation

of the RTL-level hardware design of OpenSPARC T1 would

be a more typical example of structural simulation.

Behavioral simulation is faced with trade-offs between

completeness, accuracy, and efficiency. At the low side of the

completeness scale are user-program-level simulators. At the

opposite high side are full-system simulators. “Full-system”

means that the simulation’s functional fidelity is complete

enough to run the whole operating system and applications

unmodified and unaware of running in a simulation. Orthog-

onal to the measure of completeness is the measure of ac-

curacy, i.e. regard of the model to certain aspects which do

not affect the model’s ability to execute the operating sys-

tem quite fine in other aspects. The prime example of this

concept is timing accuracy, roughly dividing simulators into

instruction-accurate and cycle-accurate. Accuracy comes at

the price of efficiency. Using more precise terms, in Sys-

temC TLM language, the lowest level of timing accuracy is

software timing: the time unit is one instruction, and the tim-

ing of memory hierarchy is not modelled at all (nor do these

software-timed simulations model other microarchitectural

time aspects such as out-of-order execution). Virtutech Sim-

ics in native mode and IBM CECsim use this level of time

model accuracy.

Loose Timing and Approximate Timing are the next two

levels of time modeling. These more accurate models come

with progressively higher performance cost. In recent years,

there has been a proliferation of full-system simulators of-

fering extremely accurate microarchitechure-level models.

Taken together, the Simics Microarchitectural Interface,

Flexus, GEMS [Martin’05], Opal (formerly called TFSim

[Mauer’02]), M5 [Leupers’10], GEM5 [Binkert’11], present

a rich variety of cycle-accurate simulation approaches and

provide models for a wide selection of ISAs.

4. Smalltalk-Aware System Simulation

Today’s prevalent full-system simulators allow complete

programmatic access to all aspects of the simulation. The

fundamental event model, the processor, the memory hierar-

chy, and the peripheral devices are all modelled by loosely-

coupled modules interacting via open APIs. These APIs

allow automatic detailed analysis of the simulated execu-

tion. There are numerous modules available today providing

full symbolic debugging of C programs, deep awareness of

various operating systems’ interal functionality, analysis of

execution of network stacks, etc.

Wright et al. [Wright’06] use a similar approach for

out-of-band introspection of the HotSpot JVM. Using full-

system simulation of the SPARC processor, they were able

to gain significant new insight into the interaction of the VM



with the memory hierarchy, and in particular into the effect

of GC and n-method recompilation on cache efficiency.

In that light, full-system simulation appeared like a

promising approach to gain new understanding of the Smalltalk

VM. In one experiment, I created a module which makes the

simulator aware of the semantics of execution of the Cog

JIT VM. Because at the time of these experiments Cog JIT

only ran on IA32, the FSS system selected for this experi-

ment was Simics simulating an in-order Intel x86 processor

running a stock “Tango” target (a Fedora Core Linux). The

module introspects into the receiver object at any instruction

when the processor is executing n-code. This is done using

the simulator’s Python API (for exploration, it felt more “im-

mediate” than the also-available C API). First, the receiver

oop, which in IA32 Cog JIT is kept in the %EDX register, is

obtained from the state of the simulated processor:

oop = conf.cpu0.edx

The following simple function then does some reasoning

about the object:

def print_class_of_oop(oop):
if ((oop & 1)==1):

print "SmallInteger"
else:

headerType = smalltalk_headerType(oop)
if (headerType==3):

print "...looks like compact class..."
else:

word2 = read_virt_value(oop-4, 4)
classOop = word2&0xFFFFFFFC
print "class oop: ", hex(classOop)
clsNameOop = read_virt_value(classOop+32, 4)
print "class name oop: ", hex(clsNameOop)
str=""
for offset in range(smalltalk_objByteSize(clsNameOop)):

str += "%c" %
read_virt_value(clsNameOop + 4 + offset, 1)

print str

First we look at the tag bit to see if the oop is a pointer or a

SmallInteger. A SmallInteger does not leave much to further

introspection. With a pointer, we dereference it to access the

object header:

def smalltalk_headerType(oop):
return read_virt_value(oop, 4) & 3

where memory is accessed like this:

# Read a little-endian value from a physical address.
def read_phys_value(paddr, len):

cpu = conf.cpu0
val = 0L
for i in range(len-1, -1, -1):

try:
val = (val<8) | SIM_read_phys_memory(cpu, paddr+i, 1)

except:
raise PTrackError("%s can not read byte at p:0x%x"

% (cpu.name, paddr+i))
return val

# Read a little-endian value from a virtual address.
def read_virt_value(vaddr, len):

cpu = conf.cpu0
try:

paddr = SIM_logical_to_physical(cpu, Sim_DI_Data, vaddr)
except:

raise PTrackError("%s can not translate v:0x%x to physical"
% (cpu.name, vaddr))

return read_phys_value(paddr, len)

(The simulator interprets the state of the simulated MMU

and performs address translation, modeling the details of the

processor’s TLB in SIM_logical_to_physical()). The

crucial difference between this simulator-side read and print-

ing a memory value in a traditional debugger is that the

simulator-side read (and in fact, none of the operations in

this module) does not disturb the state of the processor. If

the simulation includes some sort of cycle-accurate model

of time (e.g. a model of the memory hierarchy), oop deref-

erencing will not affect the state of that model. This is in

contrast with the situation where the JIT dereferences the

oop: such debugee-side access will cause simulated cache

misses, pipeline stalls, or whatever other possible effects of

the “load” instruction are modelled at the present accuracy

level (cf. next section).

The simplest way to try the introspection module is to

stop the simulator at a “magic breakpoint” in the middle

of n-code. We insert a no-effect instruction into the emitted

n-code. This “magic instruction” should not only have no

effect but also be extremely unlikely to occur in real code.

For example, on IA32 a usual candidate is

xchg %bx, %bx # cf. 16r66 below

(To make the Cog JIT emit the magic instruction, first

an abstract RTL instruction and its IA32 concretization are

defined. The abstract instruction is added at the end of the

list in CogRTLOpcodes>>initialize, and #initialize

is resent. We also need to add a new method:

Cogit>>Magic
<inline:true>
<returnTypeC:#’AbstractInstruction*’>
^self gen: Magic

The IA32 concretization amounts to changing

CogIA32Compiler>>dispatchConcretize
opcode caseOf: {

...
[Magic] -> [^self concretizeMagic].

}

and specifying the instruction encoding by adding this new

method:

CogIA32Compiler>>concretizeMagic
"Will get inlined into concretizeAt: switch."
<inline: true>
machineCode

at: 0 put: 16r66;
at: 1 put: 16r87;
at: 2 put: 16rdb.

^machineCodeSize := 3

Once the new instruction is defined, we can modify the JIT

to emit it. For illustration purposes, I modified

genGetClassFormatOfNonInt: instReg
into: destReg
scratchReg: scratchReg

"Fetch the instance’s class format into destReg,
assuming the object is non-int."

| jumpCompact jumpGotClass |
<var: #jumpCompact type: #’AbstractInstruction *’>
<var: #jumpGotClass type: #’AbstractInstruction *’>
cogit Magic. "THIS WILL STOP SIMULATION"



"Get header word in destReg"
cogit MoveMw: 0 r: instReg R: destReg.
... "rest of method"

The VM is regenerated and recompiled after these changes.)

After magic instruction support is installed in the JIT, the

simulator is instructed to run the simulation until it encoun-

ters the magic instruction; with the simulator paused, our

print_smalltalk_receiver() function can be invoked

from the simulator’s command-line interface.

In a more practical scenario, various routines in the

Smalltalk-aware module can be driven by callbacks from the

simulator. One useful application is collecting statistics. If

the simulation includes modeling of microarchitectural de-

tails, this technique can provide information about relation-

ships between high-level Smalltalk abstractions and the mi-

croarchitectural phenomena: for example, it would be possi-

ble to make queries such as “cache hit ratio when perform-

ing linked sends, but only when the receiver isKindOf: this

specified class”.

Even more interesting is stopping simulation and return-

ing control to the simulator interface when certain program-

matically specified conditions are met. The condition can be

as simple as segmentation fault. Quite often in today’s par-

allel computing environments, a bug could be caused by an

extremely rare race condition in an asynchronous interrupt-

triggered routine, and not reproducible in staged forward ex-

ecution. This class of problems is extremely well-suited to

debugging in simulation. We record some number of last

simulation steps in a ring buffer. We run the simulation until

the VM crashes. At that point, we can analyze the execution

steps that led to the crash (performing the Smalltalk-aware

introspection available to us at any step).

5. Deriving a JIT from Processor Description

Language

A number of Smalltalk VM implementations have attempted

various degrees of retargetability. While the original “PS”

VM [Deutsch’83] strictly targeted Motorola 68000, its suc-

cessor HPS [Miranda:Contexts], [Miranda:Thread] uses the

C macro-processor to achieve a degree of portability by pro-

viding a “processor definition file” containing an agreed-

upon set of “#define” C macro definitions. The Cog VM

[Miranda:Cog], written in a subset of Smalltalk, contains ab-

stract classes which represent a common concept of what a

“processor” can be (“abstract RTL”); these are subclassed to

describe concrete target ISAs (such as IA32 or a particular

ARM variant).

Being embedded in the VM implementation language and

relatively low-level, such ad-hoc processor description facil-

ities require the human implementor of the port to compre-

hend the details of the processor/platform specifications and

manually program the mapping to the “common machine”,

working in that implementation language. One limiting fac-

tor of this approach is the space of processors which can

be parametrized given a particular “common machine”: of-

ten, the set of considerations relevant to a new processor

architecture can not be expressed in terms of the existing

“common model”. Thus, there is a trade-off between speci-

ficity (because we need to be able to derive a translator from

the processor description) and generality (to cover a wide

enough family of processors).

An even more important factor is the complexity of to-

day’s architectures and OS platforms. As an example, the

ARM Architecture Reference Manual is 5158 pages (as

of the ARMv8 “A.a” issue) of natural English language.

Moreover, the information in the ARMARM alone is not

enough: a VM port would need to take into account con-

siderations of performance optimization, details of the ABI

on the platform, etc. The effort on the part of the author of

the port to comprehend all this complexity, makes the cost

per processor port prohibitive even in the case of univer-

sal processor ISAs. The port author is trapped in a cycle

of re-interpretation of the natural language of the specifi-

cations, as details of his interpretation differ from the pro-

cessor designer’s (ISA implementor’s). This kind of porting

effort becomes completely unrealistic in today’s chip-level-

integration systems-on-chip often involving application-

specific instruction sets, which are quickly growing to be-

come the norm in embedded applications.

Processor Description Languages [Mishra’08] have been

used for automatic synthesis of compilers from formal spec-

ifications of processors in parallel with synthesis of hard-

ware, thus eliminating or reducing the problem of soft-

ware/hardware ISA interpretation discrepancy mentioned

above. Pioneering work in PDLs in the 1970s was Gerhard

Zimmermann and Peter Marwedel’s MIMOLA (Machine

Independent Microprogramming Language). Since then, a

number of processor description languages and technologies

have been developed, such as nML (the processor model-

ing language in Synopsys’ “IP Designer” system), LISA

from RWTH Aachen University, EXPRESSION, ArchC,

and many others. I chose the open-source ArchC language

and system [Azevedo’05], [Mishra’08] as the base for my

experiments with deriving a Smalltalk VM from a PDL.

The ArchC system takes a processor description (writ-

ten in the ArchC language) and generates a simulator for

the processor. In addition, the ACCGen compiler generator

[Auler’12] takes an ArchC processor description and gener-

ates an LLVM “llc” backend.

My experiments with deriving a JIT from ArchC PDL did

not involve the LLVM infrastructure. Also, in the proof-of-

concept I did not go beyond a trivial mockup of the Cattell

algorithm [Cattell’80]; in other words, no optimization was

attempted as my focus was on the automatic/unsupervised

retargetability and the guarantees it gives against the hard-

ware/software ISA interpretation discrepancies mentioned

above.



SimulatorArchCPDL

ArchC

Grammar
PDL ParserT-Gen

Machine

Tables

v-code n-code
JIT

Transformations

input

input

output

output

e
x

e
c
u

te
s

input

in
p

u
t

o
u

tp
u

t

o
u

tp
u

t

in
p

u
t

(run once)

(one dataset 
per ISA)

(run once
per ISA)

(one program
per ISA)

(run once
per ISA)

(one dataset 
per ISA)

(one dataset)

(run once
per Smalltalk method

per ISA)

(one dataset
per Smalltalk method

per ISA)

(one dataset
per Smalltalk method)

Figure 1. Deriving a JIT from PDL

Figure 1 shows the basic structure of the JIT generator.

The same PDL specification of the processor is input to both

the ArchC system and the JIT generator. ArchC generates a

system simulator allowing out-of-band debugging of the JIT,

in line with ideas described in sections 3–5 of this paper. The

JIT generator is implemented as a Smalltalk program. With

the aid of the T-Gen parser generator, it re-uses ArchC’s and

ACCGen’s PDL grammars. The parser produced by T-Gen,

transforms the processor description into Machine Tables

which parametrize the Cattell algorithm [Cattell’80]. The

Machine Table is a set of productions, and Cattell’s algo-

rithm searches for a suitable chain of rewrites leading from

the IR goal on the left (“TCOL” in Cattell’s paper) to instruc-

tion terminals on the right. The experimental Smalltalk JIT

is much simpler. While the general Cattell algorithm allows

arbitrary and possibly recursive rewrites, my JIT’s deriva-

tions always consist of two fixed productions: (1) bytecode

::= RtlInstruction*, and (2) RtlInstruction ::= MachineIn-

struction*. The search degenerates into a lookup in the table.

In this sense, the JIT is equivalent to any well-known JIT

such as Cog or HPS: the difference is not in what code gen-

eration it does, but in how it is parametrized automatically

from a formal specification rather than manually by the VM

programmer. However, with the concept of a Smalltalk JIT

derived from PDL now proven possible, there is no reason,

in principle, why this approach would not work with more

advanced forms of code optimization.

Achieving the derived JIT met with two primary difficul-

ties: (1) the presence of algorithmic definitions in the ArchC

PDL, and (2) formal specification of platform ABI.

Extraction of instruction semantics from the ArchC pro-

cessor description. ArchC’s primary focus is on synthesis

of efficient simulators. To facilitate this goal, ArchC allows

algorithmic expression of instruction semantics. Auler et al.

[Auler’12] give the following example of how an instruction

behavior may be specified in custom C++ within the PDL

model:

void ac_behavior( add )
{

RB[rd] = RB[rs] + RB[rt];
};

This approach of being able to specify processor behav-

ior as an algorithm expressed in a universal programming

language, favors the point of view of simulation over that

of both hardware synthesis and compiler generation. Several

authors, including Marwedel and Leupers [Marwedel’94],

proposed various approaches to the problem of instruction

semantics extraction for the purpose of instruction selection.

These approaches generally do not work for ArchC. After

all, due to the halting problem it is not even possible to de-

cide, given such algorithmic description of an instruction,

whether the instruction’s execution will terminate at all, let

alone to compute the information necessary for instruction

selection. To solve this problem for their C complier, Auler



et al. [Auler’12] propose an RTL-based extension to ArchC.

Existing ArchC processor models need to be amended to

include this instruction-semantics information. Their ACC-

Gen compiler demonstrates that such amendment does in

fact allow to synthesize a working C compiler. My Smalltalk

JIT reuses Auler’s extensions to the PDL language and the

extended models of ARM, SPARCv8, PowerPC and MIPS

which are provided with the ArchC distribution.

The major drawback of this approach is that there are es-

sentially two processor definitions (declarative and procedu-

ral) and we are again facing the same problem of diverging

ISA interpretations.

FFI Glue is the custom machine code that connects the

abstract computation machinery of the JIT to the rest of

the system which is written in C. Its crucial role is that it’s

the way for computation to produce effect. The main issue

the glue has to deal with, is the platform ABI convention

about the C stack which the glue has to synthesize and

manage. Most of the time, PDL models don’t include an ABI

specification. After all, in a full-system simulation such ABI

model is altogether not needed because ABI is a software-

level concern: it exists entirely within the software system

running on top of the simulator.

ACCGen partially addresses this problem by extending

ArchC to describe calling conventions; however, only their

ARM model contains such ABI descriptions.

In light of all this, a production PDL-derived JIT for

Smalltalk may need a different substrate for translator syn-

thesis. Ideally, the same processor description would be

used to synthesize the hardware, the compiler toolchain

(Smalltalk VM included) and the simulator. Machine-readable

ABI specs do not need to be integral part of the processor

description, but will have to be the accepted starting point of

the synthesis of the C toolchain, lest calling convention in-

terpretation discrepancies lead to ABI violations analogous

to the hardware-software discrepancy bugs discussed above.

6. Introducing Smalltalk Awareness into

Structural Models

In the ideal scenario, the final destiny of a VM synthesized

from a high-level processor description, would be running on

hardware structures synthesized from the same description

(after being debugged in simulation derived from the same

description). At the time of this writing, I am not aware of

a PDL framework openly available and suitable for such

end-to-end experiments with Smalltalk. There is no doubt it

will become available in the future. How can we attempt to

bridge processor structure and the VM before we have such

an end-to-end framework in our hands?

A number of processor instrumentation approaches has

been described in the literature [Stollon’11]. EJTAG is a pro-

cessor debugging facility very specific to MIPS. ARM has a

comparable instrumentation system called ETM. I am not

aware of open implementations of either EJTAG or ETM,

Figure 2. Block Diagram of OpenSPARC T1 [Weaver’08]

and it is not clear how either can be used as the foundation

for a research effort to implement Smalltalk-aware processor

instrumentation.

Therefore, in one experiment, I attempted to use a hard-

ware description of a complete processor as the starting

point. In recent years, open-source processor and system-

on-chip IP has matured to a point of significant prac-

tical importance in critical production systems. The ex-

periment described here starts from the Verilog source

code for the OpenSPARC T1 microprocessor available un-

der the GNU General Public License. It might be possi-

ble, using approaches discussed by Marwedel and Leupers

[Marwedel’94], to extract enough ISA semantics from this

structural description to be able to synthesize a Smalltalk

VM, thus closing the hardware-software circle. I have not

attempted this yet. Instead, in this experiment, the hardware

structure is extended with probes which afford access to the

internal state of the hardware at points of interest to the VM

researcher and automatic analysis of that state in accord with

the programmatic structure of the Smalltalk VM.

The OpenSPARC microprocessor consists of a designer-

variable number of processor cores, connected to the mem-

ory cache, FPU and other components by the Cache Cross-

bar (CCX). Figure 2, reproduced from [Weaver’08], shows a

block diagram of OpenSPARC T1. In a reference implemen-

tation of OpenSPARC on FPGA [Thatcher’08], only the pro-

cessor core is synthesized from Verilog to the FPGA’s pro-

grammable logic. The CCX, as well as everything else on the

other side of it across from the core (memory interface, FPU,

etc., and also some system components which would be off-

chip in an ASIC implementation — e.g. Ethernet MAC; I

will call the total of these components “the off-core”), are



Microblaze Service Processor

Software CCX

Smalltalk introspection
module

OpenSPARC/Microblaze
bridge

OpenSPARC
core

Memory
Controller

Ethernet
MAC

Target
Serial

Memory
Ethernet

PHY
RS-232

PHY

Debug
Serial

JTAG

Debug Host

Smalltalk agent

 XILINX Virtex FPGA

XILINX

EDK Project

Figure 3. OpenSPARC Implementation on XILINX Vir-

tex FPGA with Smalltalk-Aware Crossbar. Cf. the corre-

sponding diagram in [Thatcher’08], NB the position of the

Smalltalk module.

implemented in a XILINX EDK design. Although ultimately

both the OpenSPARC core and the EDK project are physi-

cally sharing the same programmable logic fabric, the Mi-

croblaze service processor, the Ethernet MAC, the mem-

ory controller etc. are just standard XILINX IP, and the

“off-core” functions are programmed in software running on

the Microblaze. This is what facilitates the Smalltalk-aware

probe. The off-core code (written in C) is amended with a

Smalltalk observation module. The module is controlled by

an agent program running on the debug host via the standard

Microblaze debug serial port. The module (and the agent

through it) have full access to the state of the OpenSPARC,

and can reason about Smalltalk objects and VM program-

structures similarly to the Smalltalk-aware FSS discussed in

Section 4.

Experimenting with this configuration suggests even

more importance of deriving hardware and software from

a common higher-level processor description (as in sec-

tion 5 above). Indeed, even the reference implementation

of this mainstream microprocessor contains two embodi-

ments (ASIC- and FPGA-oriented) which are not derivative

of each other, and hence potentially diverging interpretations

of the SPARCv9 ISA.

7. Conclusion

Out-of-band observation techniques can provide deeper in-

sight into crucial aspects of the Smalltalk VM than possible

with traditional observation approaches. In particular, this

strategy can shed new light on the VM’s use of time and

power. A JIT can be written in a processor-agnostic man-

ner. Targeting such JIT at a new ISA is a matter of automati-

cally processing the new architecture’s PDL description. The

same PDL description can also be used for the synthesis of

the actual processor, as well as of the simulators for the out-

of-band observation, thus eliminating the hardware/software

mismatch as a major source of software defects.

References

[Auler’12] R. Auler, P. C. Centoducatte, E. Borin. ACCGen:

An Automatic ArchC Compiler Generator. 24th International

Symposium on Computer Architecture and High Performance

Computing, New York, USA, 2012.

[Azevedo’05] R. Azevedo, et al. The ArchC Architecture

Description Language. International Journal of Parallel

Computing, 33(5): 453–484, October 2005.

[Binkert’11] N. Binkert, et al. The GEM5 simulator. ACM

SIGARCH Computer Architecture News, Vol.39(2), May 2011.

[Cattell’80] R. G. Cattell. Automatic Derivation of Code Genera-

tors from Machine Descriptions. ACM TOPLAS, Vol. 2, Issue

2, April 1980.

[Deutsch’83] L. P. Deutsch, A. M. Schiffman. Efficient Implemen-

tation of the Smalltalk-80 System. ACM, 1983.

[Hohenauer’10] M. Hohenauer, R. Leupers. C Compilers for

ASIPs. Springer, 2010.

[Leupers’10] R. Leupers, O. Temam (eds.) Processor and System-

on-Chip Simulation. Springer, 2010.

[Magnusson’95] P. Magnusson, B. Werner. Efficient Memory

Simulation in Simics. Proceedings of the 28th Annual

Simulation Symposium. IEEE, Phoenix, AZ, USA, April 1995.

[Marwedel’94] P. Marwedel, R. Leupers. Instruction Set Extrac-

tion from Programmable Structures. European Design Automa-

tion Conference, Grenoble, France, 1994.

[Martin’05] M. M. K. Martin, et al. Multifacet’s General

Execution-driven Multiprocessor Simulator (GEMS) Toolset.

Computer Architecture News, September 2005.

[Mauer’02] C. J. Mauer, M. D. Hill, D. A. Wood. Full-System

Timing-First Simulation. Proceedings of the ACM Sigmetrics

Conference on Measurement and Modeling of Computer

Systems. 2002.

[Miranda:Cog] E. Miranda. The Cog Blog.

http://www.mirandabanda.org/cogblog

[Miranda:Thread] E. Miranda. VisualWorks Threaded Intercon-

nect. Smalltalk Solutions, New York, USA, 1999.

[Miranda:Contexts] E. Miranda. Context Management in Visual-

Works 5i. OOPSLA, Denver, Colorado, USA, 1999.

[Mishra’08] P. Mishra, N.Dutt (eds.) Processor Description Lan-

guages. Applications and Methodologies. Morgan Kaufmann

Publishers, 2008.

[Patterson’06] D. Patterson. Future of Computer Architecture.

Berkeley EECS Annual Research Symposium, 2006, Berkeley,

Calif., USA

[Rosenberg’96] J. B. Rosenberg. How Debuggers Work: Algo-

rithms, Data Structures, and Architecture. Wiley Computer

Publishing, 1996.

[Stollon’11] N. Stollon. On-Chip Instrumentation. Springer, 2011.

[Thatcher’08] T. Thatcher, P. Hartke. OpenSPARC T1 on Xilinx

FPGAs. RAMP Retreat, Stanford, August 2008.



[Weaver’08] G. L. Weaver (ed.) OpenSPARC Internals —

OpenSPARC T1/T2 CMT Throughput Computing. Sun

Microsystems, Calif., USA, 2008.

[Wright’06] G. Wright et al. Introspection of a Java Virtual Ma-

chine under Simulation. SMLI TR-2006-159, Sun Microsys-

tems, Calif., USA, 2006.


